

碧云天生物技术/Beyotime Biotechnology 订货热线: 400-168-3301或800-8283301

订货e-mail: order@beyotime.com 技术咨询: info@beyotime.com 网址: http://www.beyotime.com

Human FGF-acidic ELISA Kit

产品编号	产品名称	包装
PF319	Human FGF-acidic ELISA Kit	96次

产品简介:

- ➤ 碧云天的Human FGF-acidic ELISA Kit (Human Fibroblast Growth Factor acidic Enzyme-Linked ImmunoSorbent Assay Kit),即 人酸性成纤维细胞生长因子酶联免疫吸附检测试剂盒,是一种用于特异性地高灵敏地定量检测人血清、血浆或细胞培养上清液中的FGF-acidic的ELISA试剂盒。
- 本产品检测灵敏度高,特异性强,重复性好。多次重复检测结果表明,最小检出量为68.8pg/ml,与人的EGF、FGF basic、FGF-4、FGF-10、G-CSF、GM-CSF、小鼠的G-CSF、GM-CSF、M-CSF、VEGF165,大鼠GM-CSF、β-NGF、PDGF-BB等均没有交叉反应,板内、板间变异系数均小于10%。
- ➤ 酸性成纤维细胞生长因子(Fibroblast Growth Factor acidic, FGF acidic),又称FGF-1、内皮细胞生长因子(Endothelial Cell Growth Factor, ECGF)或肝素结合生长因子(Heparin-Binding Growth Factor, HBGF-1),是一种分子量在17-18kDa之间的非糖基化多肽,由多种细胞分泌产生。FGF-acidic分子具有155个氨基酸,不存在明显的信号肽序列,因此排除了FGF-acidic以经典的ER/Golgi通路分泌的可能。FGF-acidic可能具有一种特殊的分泌方式,并且需要热休克蛋白、磷酯酰丝氨酸、突触结合蛋白1和膜联蛋白的参与。FGF-acidic以工聚体的形式分泌,还原剂能够破坏分子间的共价键,从而释放具有生物活性的FGF-acidic。与FGF-2不同,FGF-acidic不具有可变的5°端转录起始位点,目前发现的FGF-acidic剪切变体是一种氨基酸长度为66的变体,其能与FGF受体结合但不能激活受体,具体的生物功能尚不明确。全长形式的FGF-acidic具有一个氨基酸长度在21-27之间的细胞核定位序列。人FGF-acidic与小鼠和大鼠FGF-acidic具有95%的氨基酸同源性,与牛FGF-acidic具有92%的氨基酸同源性。表达FGF-acidic的细胞主要有乳腺上皮细胞、神经细胞、骨骼及平滑肌细胞、肾近端小管上皮细胞、内皮细胞、巨噬细胞、角质细胞和成纤维细胞。
- ➤ FGF家族共有5个相应受体(FGF R1-R5), 其中FGF R1-R4都属于免疫球蛋白家族(Ig-Superfamily, IgSF) I型跨膜酪氨酸激酶受体,而FGF R5虽然也属于免疫球蛋白家族成员,但缺少酪氨酸激酶区域。FGF acidic主要与FGF R1-R4结合。FGF acidic与受体结合后能够激活酪氨酸激酶介导的信号通路,FGF和肝素之间的相互作用既能激活受体也能抑制受体,当表现为激活作用时,肝素主要是作为FGF与FGF R之间的中心连接物而存在。FGF acidic也能与细胞表面的肝素单独结合,此时只能诱导发生内化作用而并不存在细胞活化作用。
- ➤ FGF acidic能够促进内皮细胞发生有丝分裂,无论是细胞膜表面受体激活还是内化作用对完整的有丝分裂应答都必不可少。另外,FGF acidic还能促进平滑肌细胞、肝细胞、乳腺上皮细胞和成纤维细胞增殖。在发育和再生过程中FGF acidic同样具有重要作用。FGF-acidic能够通过Notch-Delta通路抑制神经元细胞的分化,诱导垂体前叶泌乳素细胞分化,促进受损外周神经轴突再生。另外,在CD4⁺T细胞增殖过程中,FGF-acidic还是重要的共刺激分子,能够促进IL-2的分泌。
- ➤ 本试剂盒采用双抗体夹心ELISA法(Sandwich ELISA)检测样品中人FGF-acidic的浓度,其原理见图1。人FGF-acidic特异的单克隆捕获抗体已预包被于酶标板上,当加入标准品或样品时,其中的人FGF-acidic会与捕获抗体结合。当加入生物素化的抗人FGF-acidic抗体后,生物素化抗人FGF-acidic抗体与人FGF-acidic结合,形成夹心的免疫复合物。随后加入辣根过氧化物酶标记Streptavidin (HRP-Streptavidin),由于生物素与链霉亲和素(Streptavidin)可以特异性地结合,因此链霉亲和素连接的HRP就会与夹心的免疫复合物连接起来而被固相捕获。最后加入显色剂TMB溶液,固相捕获的辣根过氧化物酶就会催化无色的显色剂氧化成蓝色物质,在加入终止液后呈黄色。通过酶标仪检测450nm处的吸光度值就能实现定量检测。人FGF-acidic浓度与A450值呈正比,通过绘制标准曲线,对照样品吸光度值,即可计算出样品中人FGF-acidic浓度。

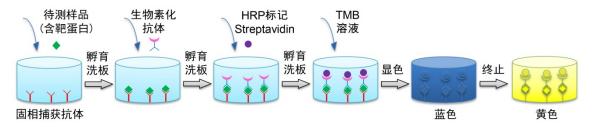


图1. 双抗体夹心ELISA原理图。

▶ 一个包装的本试剂盒,包括标准品检测,可以进行96次检测。

包装清单:

产品编号 产品名称 包装	We v				
	产品编号	产品名称	包装		

PF319-1	人FGF-acidic抗体预包被板	8孔×12条
PF319-2	样品分析缓冲液	5ml
PF319-3	标准品稀释液	10ml
PF319-4	人FGF-acidic标准品	2-4瓶
PF319-5	人FGF-acidic生物素化抗体	10ml
PF319-6	辣根过氧化物酶标记Streptavidin	10ml
PF319-7	洗涤液(20X)	30ml
PF319-8	TMB溶液	10ml
PF319-9	终止液	5ml
PF319-10	封板膜(透明)	2张
PF319-11	封板膜(白色)	2张
_	说明书	1份

保存条件:

标准品4℃保存,1-2周内有效,-20℃保存6个月内有效;试剂盒其它组分4℃保存6个月内有效。除标准品外,试剂盒其它组分严禁冻存。

注意事项:

- ▶ 由于标准品一般是冻干粉,在制备后需要严格校准,所以标准品的瓶数及每瓶标准品所需加入的稀释液体积请以实际收到的试剂盒及标准品标签上的标注为准。
- ▶ 洗涤液(20X)在低温下可能有结晶,如果发现有结晶,请室温水浴加热使结晶完全溶解后再配制工作液。
- ▶ 为保证标准品的精确性,标准品配制使用后,如果有剩余请勿再次使用。
- ▶ TMB溶液请勿接触氧化剂和金属,否则容易失效。
- ▶ 加样时,请注意每个样品或标准品必须更换枪头,一方面避免交叉污染,另一方面也避免吸取体积的误差。
- ▶ 由于本试剂盒均经过独立测试,所以请勿混用不同货号和不同批次的试剂盒组分,即使是同种试剂盒不同批次的试剂盒组分也不能混用。多个试剂盒同时检测时,请独立使用各个试剂盒中的试剂,请勿使用不同试剂盒中相同名称的组分。
- ▶ 充分混匀对保证反应结果的精准性很重要,在加液后请轻轻晃动整个96孔板,以保证混匀。
- ➤ 本试剂盒很多操作在室温进行,要求严格控制室温在25-28°C。温度低于25°C会导致最终检测到的吸光度显著下降。
- ▶ 洗涤过程非常重要,洗涤不充分会使精确度下降并导致结果误差较大。
- ▶ 检测标准品和样品时建议设置重复孔,以确保检测结果的可信度。
- ▶ 加样过程中须避免气泡的产生。
- ▶ 本产品仅限于专业人员的科学研究用,不得用于临床诊断或治疗,不得用于食品或药品,不得存放于普通住宅内。
- 为了您的安全和健康,请穿实验服并戴一次性手套操作。

使用说明:

1. 样品准备

- a. 样品的准备请按下列流程进行操作:
 - (a) 细胞上清样品离心取上清即可(如100-500g, 5分钟)。
 - (b) 对于血清样品,将全血在室温下放置30分钟至2小时,不要剧烈摇晃以免溶血,待全血自然凝固并析出血清后,4℃ 约1000-2000g离心10分钟,取黄色上清即得血清,注意不要吸取白色或淡黄色沉淀。制备好的血清需置于冰上待用。
 - (c) 对于血浆样品,采集的全血建议使用EDTA进行抗凝处理,混匀后置冰上,4℃约1000-2000g离心10分钟,取黄色或淡黄色上清即得血浆,注意不要吸取白色沉淀。制备好的血浆需置于冰上待用。
 - (d) 若待测样品不能及时检测,样品制备后请分装,冻存于-20°C或-80°C,并注意避免反复冻融。
- b. 血清样品不应添加任何防腐剂或抗凝剂。
- c. 样品应清澈透明, 检测前样品中如有悬浮物应通过离心去除。
- d. 请勿使用溶血、高血脂或污染的样品检测,否则结果将不准确。 注: 血清或血浆样品需要用样品分析缓冲液倍比稀释后再检测。

2. 检测前准备工作

- a. 试剂盒从冰箱中取出后应置室温(25-28℃)平衡20分钟,每次检测后剩余试剂请及时置于4℃保存。
- b. 配制适当量的洗涤液:将洗涤液(20X)用双蒸水或去离子水稀释至1X,例如10ml洗涤液(20X)加190ml水混匀后即为1X的洗涤液。
- c. 按标准品标签上标注的体积加入标准品稀释液至1瓶标准品中,室温孵育15分钟(为确保标准曲线的准确性,切勿缩短孵育时间)。随后轻轻混匀并用移液枪吹打几次使标准品彻底溶解,使标准品终浓度达到8000pg/ml。通常每个浓度的标准品需要检测2个孔,每个孔的标准品用量为100μl,共需200μl,同时稀释时还需要使用250μl,因此如果1瓶标准品配制后的体积不足0.45ml,请使用更多瓶数的标准品,并在合并混匀后使用。
- d. 取5个洁净的1.5毫升离心管,每管预先加入250₄的标准品稀释液,并参考图3进行标准品的倍比稀释,最终得到8000、

4000、2000、1000、500、250pg/ml共六个标准品浓度,最后将稀释好的标准品依次加入预包被板孔中,标准品稀释液直接加入作为0pg/ml浓度,共七个标准品浓度。

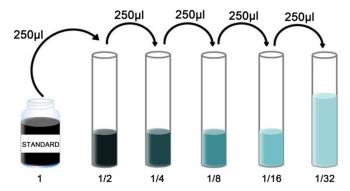


图2. 标准品倍比稀释示意图。按标准品(STANDARD)标签上标注体积加入标准品稀释液溶解并混匀后的浓度为标准品的起始浓度。其它的倍比稀释后的浓度依次为起始浓度的1/2、1/4、1/8、1/16和1/32。

3. 洗涤方法

自动洗板机或手工洗板:每孔洗涤液为300μl,注入与吸出间隔15-30秒。洗板5次。最后一次洗板完成后将板倒扣在厚吸水纸上适当用力拍干。

4. 实验过程需自备的材料和仪器

- a. 不同规格的移液枪及相应的吸头
- b. 酶标仪
- c. 自动洗板机(如果没有也可以手工洗板)
- d. 去离子水或双蒸水

5. 操作步骤

- a. 计算并确定一次实验所需的预包被板条数,取出所需板条放置在96孔框架内,暂时用不到板条请放回铝箔袋密封,保存于4℃。
- b. 每次实验都需配制标准品并绘制出标准曲线,同时建议设置本底较正孔,即空白孔,设置方法为该孔只加TMB溶液和终止液。
- c. 分别将样品或不同浓度标准品按照100μl/孔加入相应孔中,用封板膜(透明)封住反应孔,室温孵育120分钟。对于血清或血浆样品的FGF acidic的检测,可以加入50μl样品分析缓冲液后加50μl样品(注:此时样品相当于已经被稀释了2倍);如果样本浓度过高超出检测范围,请先加入50μl样品分析缓冲液,再加入50μl稀释后的样品。请注意记录好样品的稀释倍数。

注意:请先查阅相关文献确定样品中待检测蛋白的大致浓度,如果该浓度大于或者小于本试剂盒的最高或者最低标准品浓度,请适当稀释或浓缩后再进行检测。

- d. 洗板5次,且最后一次置于厚吸水纸上拍干。
- e. 加入生物素化抗体100μl/孔(注: 此生物素化抗体已经预先配制好,可以直接使用,不必再进行稀释)。用封板膜(透明) 封住反应孔,室温孵育60分钟。
- f. 洗板5次,且最后一次置于厚吸水纸上拍干。
- g. 加入辣根过氧化物酶标记Streptavidin 100μl/孔(注:此辣根过氧化物酶标记Streptavidin已经预先配制好,可以直接使用,不必再进行稀释)。用封板膜(白色)封住反应孔,室温避光孵育20分钟。室温偏低时(低于25°C),需要适当延长孵育时间。
- h. 洗板5次, 且最后一次置于厚吸水纸上拍干。
- i. 加入显色剂TMB溶液100μl/孔,用封板膜(白色)封住反应孔,室温避光孵育15-20分钟。室温偏低时需要适当延长孵育时间,此时可以孵育至标准品出现非常显著的颜色变化,若样品浓度足够高也会出现显著的颜色变化。
- j. 加入终止液50μl/孔,混匀后立即测量A450值。

6. 结果分析

- a. 复孔的值通常在20%的差异范围内结果才有效,复孔平均值可作为测量值。
- b. 每个标准品或样品的吸光度值应减去本底校正孔的吸光度值(如果没有做校正孔,则不需要减去)。
- c. 绘制标准曲线。以标准品浓度为横坐标,A450值为纵坐标,以平滑线连接各标准品的坐标点。通过样品的吸光度值和标准曲线计算出样品的相应浓度。

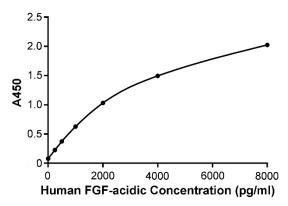


图3. Human FGF-acidic ELISA Kit的标准曲线。实测数据会因实验条件、检测仪器等的不同而存在差异,图中数据仅供参考。

d. 若样品OD值高于标准曲线上限,应适当稀释后重新测定,计算浓度时需注意乘以样品的稀释倍数。

相关产品:

 		
产品编号	产品名称	包装
PF300	Human FGF-23 ELISA Kit	96次
PF313	Human FGF-21 ELISA Kit	96次
PF319	Human FGF-acidic ELISA Kit	96次
PF323	Human FGF-basic ELISA Kit	96次
PK678	Human KGF/FGF-7 ELISA Kit	96次

Version 2018.11.21